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Abstract.  An improved calculation for  block  chainwork  on a  hybrid
proof-of-work/hivemining  blockchain  is  presented.  This  calculation
improves  cooperation  between  miners  using  proof-of-work  and  hive
miners, while further mitigating pure proof-of-work attacks, as well as
two classes of hybrid proof-of-work/hive attack. The chainwork scaling
mechanism is likely to be of value to other types of hybrid blockchain.

1. Background and motivation

In the months following activation of the original Hive Mining[1] consensus rules on the 
LitecoinCash mainnet in Feb 2019, various issues were observed:

1.1 Block type distribution ratio

The ideal block type distribution ratio of 50:50 between proof-of-work and hivemined blocks was 
not being reached. In practice, typically 33% of blocks in an arbitrary timespan were seen to be 
hivemined.

1.2 Shallow depth orphans

Although shallow depth orphan chains of 1-2 blocks were entirely expected (especially since, after 
a proof-of-work block, all hivemining beekeepers try to find a block simultaneously), users were 
dissatisfied with the particular situation of seeing Hive blocks get orphaned at depth 0 by proof-of-
work blocks.

1.3 Deep reorganisations in July 2019

In July 2019, deep reorgs of up to 102 removed blocks were observed, indicating a successful 
double spend via a classical withheld-blocks attack[2][3]. Analysis of both the orphaned chain and the 
chain which caused the reorganisation showed that the attacker had attempted either a pure proof-
of-work or a “stealthy bees” attack.
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In the first divergent block, the attacker created bees. Only in the following block did the attacker’s 
double spend occur. This suggests that the attacker was hoping to stay ahead of the mainnet in 
chainwork terms long enough to mature those bees on the private chain.

These attacks occurred when the hivemining Global Index on mainnet was around 100, indicating 
full effectiveness of hivemining protection.

Rather than getting ahead on chainwork immediately, there was a significant lag period as the 
attacker ramped up their proof-of-work difficulty. The additional chainwork provided to mainnet by
hivemining prevented the attacker overtaking mainnet in chainwork for 40 blocks.

The attacker’s final difficulty of 4X that of mainnet suggests the attacker could bring to bear at least
400% of the hashpower of the entire of mainnet, making this at least an “80% attack”.

While the original Hive rules are capable of protecting the network indefinitely against an attack 
with equivalent power to the entire of mainnet, they were not sufficient to defend against an attack 
of the magnitude seen.

If the attacker had intended to mature the bees they created on their private chain in order to gain 
bonus chainwork from hivemining (a “stealthy bees” attack), this did not come to pass as the 
withheld blocks were broadcast to the network long before the bees would have been able to 
mature.

2. Dynamic chainwork scaling

In order to provide hivemined blocks with sufficient weight to assist in securing the blockchain, 
when their “natural” chainwork would be very low due to hivemining solving difficulty being many
orders of magnitude lower than typical proof-of-work difficulty, the original Hive consensus rules 
award bonus chainwork to each hivemined block based on the chainwork of the proof-of-work 
block behind it. 

chainWork = ∑
n∈pow blocks

expectedHashesToCalculate(blocks[n] . difficulty)

+ ∑
n∈hiveblocks

k ∗expectedHashesToCalculate (blocks [n −1] . difficulty)+( MAXINT−blocks[n] . beeHash)

In the original rules, the scaling parameter k was set to 1, allowing a hivemined block to inherit the 
same amount of chainwork as the preceding proof-of-work block (plus the very small amount of 
natural chainwork the hivemined block itself contributes).

It was observed that this scaling factor value was not high enough to indefinitely protect the 
network against a pure proof-of-work attacker with an amount of hashpower exceeding that of the 
rest of the network.
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Simulations showed that with high enough value for k, hivemined blocks could protect against very 
high amounts of hashpower – many times greater than the hashpower of the rest of the network.

However, awarding massive chainwork bonuses to hivemined blocks potentially weaponizes 
hivemining by giving a single hivemined block enough chainwork to reorg many proof-of-work 
blocks. This dangerous imbalance could create a slew of new attack vectors.

Therefore, it was decided to introduce a dynamic value for k. By awarding bonus chainwork to both
hivemined blocks and proof-of-work blocks, so long as they are alternating, every block on the 
public network can gain much more chainwork than every block on an attacker’s withheld chain, 
whether the attacker is using a pure proof-of-work attack, a “stealthy bees” attack, or a “lazy bees” 
attack (discussed below).

This enables both proof-of-work miners and beekeepers to work symbiotically, giving each more 
power to secure the network while not enabling either to overwrite the work of the other via 
disproportionate chainwork.

Giving a slightly higher bonus to hivemined blocks than to proof-of-work blocks helps to prevent 
the shallow hive block orphans described in section 1.2.

For a hivemined block, the base value for k is 2 (consensus.minK). This value can scale up to 

k=16 (consensus.maxK), depending on current hive difficulty. Maximum value is reached at a 

hive difficulty of 0.006 (consensus.maxHiveDiff). This hive difficulty is typical of that seen on 

mainnet with GI at 100 and no adverse network conditions.

For a proof-of-work block, the highest value for k is 5 (consensus.maxKPow) -- but this value is 

only awarded to a proof-of-work block that immediately follows a hivemined block. Each 
subsequent proof-of-work blocks with no hivemined block diminishes this value by 1, so after 4 
proof-of-work blocks in a row, no further chainwork bonuses are gained by proof-of-work blocks 
until a hivemined block follows.

A proof-of-work block’s k is also scaled in a quadratic relationship with current hive difficulty 
before being applied, so that in low hive difficulty conditions no chainwork bonus is awarded to 
proof-of-work blocks.
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An example of dynamic k-scaling, simulated with live data from mainnet

A simple simulator was devised to allow us to replay the attacker’s attack run with these new rules; 
this can be found at https://  www  .litecoinca.sh/k-optimiser/. With the final Hive 1.1 parameters of 
minK = 2, maxK = 16, maxHiveDiff = 0.006, maxKPow = 5, powSplit1 = 0.005, powSplit2 = 
0.0025, it can be seen that the attacker is never able to get ahead during this run.

In fact, from the beginning of the attack the attackers falls behind immediately and the gap only 
continues to widen.

Note that this simple simulator does not consider relative time differences in block issue between 
the withheld chain and mainnet chain.

We consider this symbiosis between mining methods to be beneficial to the security of any hybrid 
blockchain that features different types of block production.
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3. Improved hive difficulty adjustment

In order to address the fact that the ideal hive block to proof-of-work block ratio of 50% was not 
being achieved on mainnet, we present a revised approach to calculating hive difficulty, in 
combination with a relaxation of the rule that hive blocks must follow proof-of-work blocks.

Due to the constraint that a hive block necessarily follow a proof-of-work block, the maximum 
achievable hive to proof-of-work ratio was 50%. This presents a problem for difficulty adjustment, 
as it leaves no room for a “hive is too easy” signal, beyond hitting the desired 50% ratio. This 
means that difficulty adjustment in this context by necessity must treat the ideal situation as the 
“hive is too easy” signal and starting increasing the difficulty, until such time as we do not see the 
ideal 50% ratio, before slowly decreasing it to target the optimum ratio again. The obvious result is 
that whenever the difficulty adjustment is tuning the hive difficulty to the online population of bees,
the number of hive blocks seen must be less than the ideal ratio.

In practice, in order to keep up with natural variations in the online bee population, this facet of the 
difficulty adjustment has resulted in a hive to proof-of-work ratio of closer to 33%.

A further reason why difficulty adjustment in a hive mining context is different to that in proof-of-
work is due to the nature of the “signal” that the difficulty adjustment algorithm has to work with.

In proof-of-work mining, the speed at which blocks are solved gives a scalar representation of the 
imbalance between the network hash rate, and the ideal block times: Individual block times, when 
averaged over many samples due to the probabilistic nature of proof-of-work solving, give a linear 
indication of how much the network is over or under-performing, with respect to target block times.

In contrast, with Hive mining there is no temporal component: If a hive is able to solve a block, it 
can do so immediately. A single solve, therefore imparts no relevant data about the network 
conditions and how they relate to the desired hive difficulty, ergo, designing a difficulty algorithm 
for hive mining around block times is clearly meaningless and another source for an indicative 
signal is needed.

As the presence of a solved hive block alone is quite a noisy signal when compared to an individual 
proof-of-work block solve time, a reasonable number of blocks must be examined to achieve a 
stochastically valid sampling. In order to allow such a sampling to indicate whether there are too 
few or too many hive blocks appearing with respect to the ideal ratio and current difficulty, we have
chosen to relax the constraint that a hive block must follow a proof-of-work block.

By allowing the network to wander into the territory of “too many hive blocks”, the difficulty 
adjustment can work from both sides, with the result being that over time, the average hive to proof-
of-work ratio will be much closer to the configured target of 50%.

Given the above, the difficulty adjustment algorithm itself is rather uncomplicated, an 
implementation of a simple moving average based on Zawy’s Universal Difficulty Algorithm[1] with
w = 1, r = 1. The key difference being that the moving average samples a constant number of hive 
blocks (therefore, a variable window size on the actual blockchain, depending on the observed hive 
to proof-of-work ratio), and calculates its difficulty adjustment based on the difference between the 
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observed hive/proof-of-work ratio in the window, and the target, rather than the average solve times 
and target solve time as in proof-of-work.

On mainnet, the amount of hive blocks that make up a difficulty sampling window is set at 36, and 
2 hive blocks are allowed to follow a single proof-of-work block. Note that, due to the linear 
adjustment present in the simple moving average, and the maximum hive/proof-of-work ratio in the 
sampling window being 2:1 (two hive blocks for every proof-of-work block), the difficulty 
algorithm can correct less aggressively when there are too many hive blocks, than when there are 
too few.

A modified implementation was considered in order to correct this behaviour. However, the simple 
version has been used for two reasons. The first is clarity of implementation, the second is that a 
less aggressive adjustment when difficulty is too easy, will at worst result in slightly increased 
shallow hive orphans, and more frequently, in slightly more hive blocks being produced than the 
target, which is more preferable to the users of the network than the opposite.
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4. Effect on attackers

4.1 Pure proof-of-work attackers

As described in Section 2, a pure proof-of-work attacker (ie, one with no bees) is immediately 
disadvantaged from the moment they withhold their first block. Whatever the public network hive 
difficulty at the start of their run, their proof-of-work chainwork bonus will disappear within 4 
private blocks.

As the attacker ramps their proof-of-work difficulty in an attempt to get ahead in chainwork, a level 
of hashpower of up to 10 times the entire rest of the network will ceiling out difficulty before they 
can do so.

4.2 Attackers with privately matured bees (“stealthy bees” attack)

This attack envisages an attacker who initially has no bees and starts with a pure proof-of-work 
attack. In their first withheld block, the attacker creates bees with the intention of maturing them on 
their withheld chain and then using them to accumulate chainwork.

However, the bee maturation period of 1152 blocks and the rapid divergence of chainwork between 
the public and withheld chains makes it very unlikely that the attacker’s withheld chain would be 
viable after this maturation period.

4.3 Attackers with publically matured bees (“lazy bees” attack)

This attack refers to a hypothetical attacker who has bees they have matured on the public network 
in advance of their attack run. The attacker intends to produce a viable withheld chain through a 
combination of proof-of-work mining and hivemining.

Supposing that the attacker does not own a large majority of the total bee population on the public 
network (ie a strong majority hiveweight), then when they initially produce their first private block, 
it is unlikely that their hive will be able to meet the hive difficulty target (inherited from the last 
shared block on the public chain).

By the time hive difficulty on their private chain falls enough for their private bees to be able to 
start to produce blocks, the interim proof-of-work blocks they have been forced to produce will 
have quickly lost chainwork bonus and be falling behind mainnet.

In addition, once these “lazy bees” do begin producing blocks, hive difficulty will necessarily have 
fallen so low that neither those hivemined blocks, nor proof-of-work blocks interspersed with them, 
will gain significant chainwork bonuses.
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